Applied Natural Language Processing with Python

Implementing Machine Learning and Deep Learning Algorithms for Natural Language Processing

Taweh Beysolow II

PDF
ca. 26,99
Amazon iTunes Thalia.de Weltbild.de Hugendubel Bücher.de ebook.de kobo Mayersche Osiander Google Books Barnes&Noble bol.com
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Apress img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Informatik

Beschreibung

Learn to harness the power of AI for natural language processing, performing tasks such as spell check, text summarization, document classification, and natural language generation. Along the way, you will learn the skills to implement these methods in larger infrastructures to replace existing code or create new algorithms. 

Applied Natural Language Processing with Python starts with reviewing the necessary machine learning concepts before moving onto discussing various NLP problems. After reading this book, you will have the skills to apply these concepts in your own professional environment.


What You Will Learn  
  • Utilize various machine learning and natural language processing libraries such as TensorFlow, Keras, NLTK, and Gensim
  • Manipulate and preprocess raw text data in formats such as .txt and .pdf
  • Strengthen your skills in data science by learning both the theory and the application of various algorithms  

Who This Book Is For 

You should be at least a beginner in ML to get the most out of this text, but you needn’t feel that you need be an expert to understand the content.

Weitere Titel von diesem Autor
Weitere Titel zum gleichen Preis

Kundenbewertungen

Schlagwörter

Caffee, Python, TensorFlow, Neural Networks, Deep Learning, Machine Learning, Natural Language Processing, Keras