img Leseprobe Leseprobe

Nature-Inspired Methods for Metaheuristics Optimization

Algorithms and Applications in Science and Engineering

Rajib Kumar Bhattacharjya (Hrsg.), Fouad Bennis (Hrsg.)

PDF
ca. 106,99
Amazon iTunes Thalia.de Weltbild.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer International Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Sonstiges

Beschreibung

This book gathers together a set of chapters covering recent development in optimization methods that are inspired by nature. The first group of chapters describes in detail different meta-heuristic algorithms, and shows their applicability using some test or real-world problems. The second part of the book is especially focused on advanced applications and case studies. They span different engineering fields, including mechanical, electrical and civil engineering, and earth/environmental science, and covers topics such as robotics, water management, process optimization, among others. The book covers both basic concepts and advanced issues, offering a timely introduction to nature-inspired optimization method for newcomers and students, and a source of inspiration as well as important practical insights to engineers and researchers.

Weitere Titel von diesem Autor
Weitere Titel zum gleichen Preis
Cover Ocular Fluid Dynamics
Giovanna Guidoboni
Cover Operational Research
A. Ismael F. Vaz
Cover City Networks
Stamatina Th. Rassia

Kundenbewertungen

Schlagwörter

Ant Colony Optimization, Unimodal and Multimodal functions, Corridor Allocation Problems, Facility layout problems, Memetic algorithms, Leakages from sewers, Analytical Hierarchical Process, Flower pollination optimization, Harmony Search, Evolutionary algorithms, Genetic Algorithms, Water cycle optimization, Nature inspired optimization, Source identification problems, Invasive weeds, Interactive genetic algorithms, Swarm algorithms, Design of irrigation canals, Biogeography Based Optimization, Shuffled Frog Leaping Algorithm