An Elastic Model for Volcanology

Andrea Aspri

PDF
ca. 63,06
Amazon iTunes Thalia.de Weltbild.de Hugendubel Bücher.de ebook.de kobo Mayersche Osiander Google Books Barnes&Noble bol.com
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer International Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Analysis

Beschreibung

This monograph presents a rigorous mathematical framework for a linear elastic model arising from volcanology that explains deformation effects generated by inflating or deflating magma chambers in the Earth’s interior. From a mathematical perspective, these modeling assumptions manifest as a boundary value problem that has long been known by researchers in volcanology, but has not, until now, been given a thorough mathematical treatment. This mathematical study gives an explicit formula for the solution of the boundary value problem which generalizes the few well-known, explicit solutions found in geophysics literature. Using two distinct analytical approaches—one involving weighted Sobolev spaces, and the other using single and double layer potentials—the well-posedness of the elastic model is proven. An Elastic Model for Volcanology will be of particular interest to mathematicians researching inverse problems, as well as geophysicists studying volcanology.

Weitere Titel von diesem Autor
Weitere Titel zum gleichen Preis
Cover Analysis IV
Roger Godement
Cover Analysis III
Roger Godement
Cover Soft Solids
Alan Freed
Cover Measure Theory
Donald L. Cohn
Cover Complex Analysis
Jane P. Gilman

Kundenbewertungen

Schlagwörter

weighted sobolev spaces, Geophysics research math, linear elasticity, Math magma, Mathematical geophysics book, single and double layer potentials, stability estimates, magma chamber, Magma chamber, Math research volcanoes, Mathematical geosciences, neumann function, Neumann boundary problem, hydrostatic pressure, Mogi model, Mathematical modeling geophysics, Half-space model, Mathematical geophysics, asymptotic expansions