Genetic Programming Theory and Practice XIII

W.P. Worzel (Hrsg.), Mark Kotanchek (Hrsg.), Arthur Kordon (Hrsg.), Rick Riolo (Hrsg.)

PDF
ca. 117,69
Amazon iTunes Thalia.de Weltbild.de Hugendubel Bücher.de ebook.de kobo Mayersche Osiander Google Books Barnes&Noble bol.com
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer International Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Informatik

Beschreibung

These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: multi-objective genetic programming, learning heuristics, Kaizen programming, Evolution of Everything (EvE), lexicase selection, behavioral program synthesis, symbolic regression with noisy training data, graph databases, and multidimensional clustering. It also covers several chapters on best practices and lesson learned from hands-on experience. Additional application areas include financial operations, genetic analysis, and predicting product choice. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.


Weitere Titel von diesem Autor
Weitere Titel zum gleichen Preis
Cover Microservices
Victor Rivera
Cover Information Storage
Cornelia S. Große
Cover Applied Data Science
Martin Braschler
Cover Designing Thriving Systems
Leslie J. Waguespack

Kundenbewertungen

Schlagwörter

Genetic programming, Data science, Geometric programming, Singularity, Feature generation, Machine learning, Semantic programming, Evolutionary algorithms, Lexicase selection, Cloud computing, Hyper heuristics, Big data, Multi-objective optimization, Symbolic regression