Computer Vision for Driver Assistance

Simultaneous Traffic and Driver Monitoring

Reinhard Klette, Mahdi Rezaei

PDF
ca. 107,09
Amazon iTunes Thalia.de Weltbild.de Hugendubel Bücher.de ebook.de kobo Mayersche Osiander Google Books Barnes&Noble bol.com
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer International Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Sonstiges

Beschreibung

This book summarises the state of the art in computer vision-based driver and road monitoring, focussing on monocular vision technology in particular, with the aim to address challenges of driver assistance and autonomous driving systems.

While the systems designed for the assistance of drivers of on-road vehicles are currently converging to the design of autonomous vehicles, the research presented here focuses on scenarios where a driver is still assumed to pay attention to the traffic while operating a partially automated vehicle. Proposing various computer vision algorithms, techniques and methodologies, the authors also provide a general review of computer vision technologies that are relevant for driver assistance and fully autonomous vehicles.

Computer Vision for Driver Assistance is the first book of its kind and will appeal to undergraduate and graduate students, researchers, engineers and those generally interested in computer vision-related topics in modern vehicle design. 

Weitere Titel zum gleichen Preis
Cover Operational Research
A. Ismael F. Vaz
Cover City Networks
Stamatina Th. Rassia
Cover Orthogonal Designs
Jennifer Seberry
Cover Hemomath
Antonio Fasano

Kundenbewertungen

Schlagwörter

driver fatigue, vehicle detection, object tracking, advanced driver-assistance systems, object detection, driver distraction, autonomous vehicles, fuzzy logic, unsupervised learning, supervised learning