Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampere Equations

VIASM 2016

Nam Q. Le, Hiroyoshi Mitake, Hung V. Tran, et al.

ca. 31,12
Amazon iTunes Thalia.de Weltbild.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer International Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Mathematik


Consisting of two parts, the first part of this volume is an essentially self-contained exposition of the geometric aspects of local and global regularity theory for the Monge-Ampere and linearized Monge-Ampere equations. As an application, we solve the second boundary value problem of the prescribed affine mean curvature equation, which can be viewed as a coupling of the latter two equations. Of interest in its own right, the linearized Monge-Ampere equation also has deep connections and applications in analysis, fluid mechanics and geometry, including the semi-geostrophic equations in atmospheric flows, the affine maximal surface equation in affine geometry and the problem of finding Kahler metrics of constant scalar curvature in complex geometry.  Among other topics, the second part provides a thorough exposition of the large time behavior and discounted approximation of Hamilton-Jacobi equations, which have received much attention in the last two decades, and a new approach to the subject, the nonlinear adjoint method, is introduced. The appendix offers a short introduction to the theory of viscosity solutions of first-order Hamilton-Jacobi equations. 

Weitere Titel von diesem Autor
Weitere Titel zum gleichen Preis
Cover Praktische Analysis
Dr. Horst von Sanden
Cover Integraltafel
Nikolaus Hofreiter
Cover Statistisch gesehen
John L. Jr. Phillips
Cover Analysis 2
Otto Forster
Cover Conformal Geometry
Ravi S. Kulkarni
Cover Multivariate Statistik
Hans Friedrich Eckey