Ginzburg-Landau Vortices

Haïm Brezis, Frédéric Hélein, Fabrice Bethuel, et al.

PDF
ca. 67,82
Amazon iTunes Thalia.de Weltbild.de Hugendubel Bücher.de ebook.de kobo Mayersche Osiander Google Books Barnes&Noble bol.com
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer International Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Analysis

Beschreibung

This book is concerned with the study in two dimensions of stationary solutions of uɛ of a complex valued Ginzburg-Landau equation involving a small parameter ɛ. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ɛ has a dimension of a length which is usually small.  Thus, it is of great interest to study the asymptotics as ɛ tends to zero.

One of the main results asserts that the limit u-star of minimizers uɛ exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized.

The material presented in this book covers mostly original results by the authors. It assumes a moderate knowledge of nonlinear functional analysis, partial differential equations, and complex functions. This book is designed for researchers and graduate students alike, and can be used as a one-semester text. The present softcover reprint is designed to make this classic text available to a wider audience.

Weitere Titel von diesem Autor

Kundenbewertungen

Schlagwörter

Partial Differential Equations, Phase Transition Phenomena, Superfluids, Ginzburg-Landau Vortices, Nonlinear Functional Analysis, Superconductors