Compressed Sensing and its Applications

Second International MATHEON Conference 2015

Giuseppe Caire (Hrsg.), Holger Boche (Hrsg.), Rudolf Mathar (Hrsg.), Robert Calderbank (Hrsg.), Maximilian März (Hrsg.), Gitta Kutyniok (Hrsg.)

PDF
ca. 106,99
Amazon iTunes Thalia.de Weltbild.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer International Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Sonstiges

Beschreibung

This contributed volume contains articles written by the plenary and invited speakers from the second international MATHEON Workshop 2015 that focus on applications of compressed sensing. Article authors address their techniques for solving the problems of compressed sensing, as well as connections to related areas like detecting community-like structures in graphs, curbatures on Grassmanians, and randomized tensor train singular value decompositions. Some of the novel applications covered include dimensionality reduction, information theory, random matrices, sparse approximation, and sparse recovery. 


This book is aimed at both graduate students and researchers in the areas of applied mathematics, computer science, and engineering, as well as other applied scientists exploring the potential applications for the novel methodology of compressed sensing. An introduction to the subject of compressed sensing is also provided for researchers interested in the field who are not as familiar with it. 

Weitere Titel von diesem Autor
Weitere Titel zum gleichen Preis
Cover Ocular Fluid Dynamics
Giovanna Guidoboni
Cover Operational Research
A. Ismael F. Vaz
Cover City Networks
Stamatina Th. Rassia

Kundenbewertungen

Schlagwörter

sparse probability measures, stochastic block model, Hilbert spaces, Information Theory, Fourier phase retrieval, Random Matrices, Dimensionality Reduction, Sparse Recovery, Compressed Sensing, Sparse Approximation