img Leseprobe Leseprobe

An Alternative Secretory Pathway in the Malaria Parasite 'Plasmodium falciparum'

Thuvaraka Thavayogarajah

PDF
39,99
Amazon iTunes Thalia.de Weltbild.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

GRIN Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Landwirtschaft, Gartenbau

Beschreibung

Doctoral Thesis / Dissertation from the year 2014 in the subject Biology - Diseases, Health, Nutrition, grade: 1.3, University of Marburg (European virtual Institute for Malaria Research), language: English, abstract: This study focuses on the discovery of an alternative secretory pathway to the ER/Golgi route in the malaria parasite P. falciparum in infected RBCs. Two proteins appeared to be promising candidates of an alternative secretory pathway: the PfADP-ribosylation factor 1 (ARF1) and the Pfadenylate kinase 2 (AK2). Both proteins contained an N-myristoylation site at their N-terminus, which is indicative for N-myristoylation. N-myristoylation is a co-translational modification of a protein, whereby a fatty acid (myristate) is irreversibly attached to the glycine residue at the N-terminus of a protein via the PfN-myristoyltransferase (NMT). A preceding proteomic analysis of the parasitophorous vacuole and a reporter construct study proposed for both PfARF1 (determined by a proteomic study) and PfAK2 (determined by a reporter construct study) PV localization although both proteins lacked a signal peptide. That’s why it was hypothesized whether or not N-myristoylation would drive protein secretion across the parasite plasma membrane (PPM). The subcellular localization of the PfARF1/GFP parasites and the PfAK2/GFP parasites, respectively, were analyzed via epifluorescence microscopy and biochemical methods. In parallel, another batch of reporter constructs were generated and analyzed, where the N-myristoylation site of PfARF1 (this study) and PfAK2 (Ma et al., 2012), respectively, was removed (PfARF1G2A/GFP and PfAK2G2A/GFP). Live cell imaging showed that the fusion protein ARF1/GFP was localized as dot-like structures in the parasite. In contrast, the phenotype of the fusion protein of the PfARF1G2A/GFP parasites showed an evenly distributed signal in the parasite cytosol. Further analysis of the subcellular localization of the PfARF1 strongly supports its localization to compartments of the early secretory pathway of the parasite, but no localization in the PV. In contrast, the fusion protein PfAK2/GFP localized to a ring-like structure around the parasite indicating PV localization. The PfAK2G2A/GFP parasites showed a cytosolic localization of the fusion protein (Ma et al., 2012). Biochemical analyses revaled that the fusion protein PfAK2/GFP was secreted into the PV when the N-myristoylation site was present. Furthermore, it could be shown that the N-terminus of the PfAK2 protein is sufficient for parasite plasma membrane targeting, stable membrane anchoring and subsequent protein translocation across the PPM.

Weitere Titel in dieser Kategorie

Kundenbewertungen

Schlagwörter

Malaria, Infektionsbiologie