Finite and Instantaneous Screw Theory in Robotic Mechanism

Binbin Lian, Tao Sun, Shuofei Yang, et al.

PDF
ca. 96,29
Amazon iTunes Thalia.de Weltbild.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer Singapore img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Elektronik, Elektrotechnik, Nachrichtentechnik

Beschreibung

This book presents a finite and instantaneous screw theory for the development of robotic mechanisms. It addresses the analytical description and algebraic computation of finite motion, resulting in a generalized type synthesis approach. It then discusses the direct connection between topology and performance models, leading to an integrated performance analysis and design framework. The book then explores parameter uncertainty and multiple performance requirements for reliable, optimal design methods, and describes the error accumulation principle and parameter identification algorithm, to increase robot accuracy. It proposes a unified and generic methodology, and appliesto the invention, analysis, design, and calibration of robotic mechanisms.

The book is intended for researchers, graduate students and engineers in the fields of robotic mechanism and robot design and applications.

Weitere Titel in dieser Kategorie

Kundenbewertungen

Schlagwörter

Forward Kinematic, Hessian Matrix, Kinematic Calibration, Performance Design, Multi-objective Optimization, Virtual Joint Method, Error Modeling, Jacobian Matrix, Instantaneous Motion, Parameter Uncertainty, Dynamic, Twist and Wrench, Parallel Mechanism, Robotic Mechanism, Parameter Identification, Articulated Serial Robot, Motion Pattern, Finite Motion, Inverse Kinematic, Type Synthesis