img Leseprobe Leseprobe

Quantum versus Classical Mechanics and Integrability Problems

towards a unification of approaches and tools

Maciej Błaszak

PDF
ca. 106,99
Amazon iTunes Thalia.de Weltbild.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer International Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Theoretische Physik

Beschreibung

This accessible monograph introduces physicists to the general relation between classical and quantum mechanics based on the mathematical idea of deformation quantization and describes an original approach to the theory of quantum integrable systems developed by the author.
The first goal of the book is to develop of a common, coordinate free formulation of classical and quantum Hamiltonian mechanics, framed in common mathematical language.
In particular, a coordinate free model of quantum Hamiltonian systems in Riemannian spaces is formulated, based on the mathematical idea of deformation quantization, as a complete physical theory with an appropriate mathematical accuracy.
The second goal is to develop of a theory which allows for a deeper understanding of classical and quantum integrability. For this reason the modern separability theory on both classical and quantum level is presented. In particular, the book presents a modern geometric separability theory, based on bi-Poissonian and bi-presymplectic representations of finite dimensional Liouville integrable systems and their admissible separable quantizations.
The book contains also a generalized theory of classical Stäckel transforms  and the discussion of the concept of quantum trajectories.
In order to make the text consistent and self-contained, the book starts with a compact overview of mathematical tools necessary for understanding the remaining part of the book. However, because the book is dedicated mainly to physicists, despite its mathematical nature, it refrains from highlighting definitions, theorems or lemmas.
Nevertheless, all statements presented are either proved or the reader is referred to the literature where the proof is available.


Weitere Titel in dieser Kategorie

Kundenbewertungen

Schlagwörter

separability theory, Quantum integrable systems, Liouville integrable systems, Integrable systems, Staeckel systems, geometric deformation, linear tensor algebra, deformation quantization, Quantum trajectory, tensor fields, Classical integrable systems, Riemannian spaces, Lie derivative, bosonic systems, Hamilton Jacobi theory, quantum integrability, symplectic manifolds