Quantum Mechanics in Matrix Form

Günter Ludyk

PDF
ca. 106,99
Amazon iTunes Thalia.de Weltbild.de Hugendubel Bücher.de ebook.de kobo Mayersche Osiander Google Books Barnes&Noble bol.com
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer International Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Theoretische Physik

Beschreibung

This book gives an introduction to quantum mechanics with the matrix method. Heisenberg's matrix mechanics is described in detail. The fundamental equations are derived by algebraic methods using matrix calculus. Only a brief description of Schrödinger's wave mechanics is given (in most books exclusively treated), to show their equivalence to Heisenberg's matrix  method. In the first part the historical development of Quantum theory by Planck, Bohr and Sommerfeld is sketched, followed by the ideas and methods of Heisenberg, Born and Jordan. Then Pauli's spin and exclusion principles are treated. Pauli's exclusion principle leads to the structure of atoms. Finally, Dirac´s relativistic quantum mechanics is shortly presented. Matrices and matrix equations are today easy to handle when implementing numerical algorithms using standard software as MAPLE and Mathematica.

Weitere Titel von diesem Autor
Weitere Titel zum gleichen Preis
Cover Relativistic Geodesy
Claus Lämmerzahl
Cover Asymptotically Safe Gravity
Alessia Benedetta Platania
Cover Gravity and the Quantum
Jasjeet Singh Bagla

Kundenbewertungen

Schlagwörter

Projection Matrices, Schur product of matrices 173, Bohr-Sommerfeld Quantization Rule, Permutation Matrix, Eigenvalues and Eigenvectors, Axiomatic Description of Square Matrix, Equivalence of Matrix with Wave Mechanics, Matrix Vector of Angular Momentum, Kronecker Product, Expansion of the Matrices Method