img Leseprobe Leseprobe

Methane Biocatalysis: Paving the Way to Sustainability

Xin-Hui Xing (Hrsg.), Marina G. Kalyuzhnaya (Hrsg.)

PDF
ca. 149,79
Amazon iTunes Thalia.de Weltbild.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer International Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Mikrobiologie

Beschreibung

This book provides in-depth insights into the most recent developments in different areas of microbial methane and methanol utilization, including novel fundamental discoveries in genomics and physiology, innovative strategies for metabolic engineering and new synthetic approaches for generation of feedstocks, chemicals and fuels from methane, and finally economics and the implementation of industrial biocatalysis using methane consuming bacteria.  

Methane, as natural gas or biogas, penetrates every area of human activity, from households to large industries and is often promoted as the cleanest fuel. However, one should not forget that this bundle of energy, carbon, and hydrogen comes with an exceptionally large environmental footprint. To meet goals of long-term sustainability and human well-being, all areas of energy, chemicals, agriculture, waste-management industries must go beyond short-term economic considerations and target both large and small methane emissions. The search for new environment-friendly approaches for methane capture and valorization is an ongoing journey. While it is not yet apparent which innovation might represent the best solution, it is evident that methane biocatalysis is one of the most promising paths. Microbes are gatekeepers of fugitive methane in Nature. Methane-consuming microbes are typically small in number but exceptionally big in their impact on the natural carbon cycle.  They control and often completely eliminate methane emission from a variety of biological and geothermal sources. The tremendous potential of these microbial systems, is only now being implemented in human-made systems.  

The book addresses professors, researchers and graduate students from both academia and industry working in microbial biotechnology, molecular biology and chemical engineering. 



Weitere Titel in dieser Kategorie
Cover Ion Channels
Novartis Foundation
Cover The New Organon
Francis Bacon

Kundenbewertungen

Schlagwörter

biogas production, genetic engineering, biocatalysis, sustainable energy, Systems biology, monooxygenase, methanotrophic bacteria